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　　Abstract　　This paper investigates the semi-online scheduling problem wi th the know n largest size on tw o uniform machines.T he

object ive is to maximize the minimum machine complet ion time.Both low er bounds and algori thms are given.Algori thms are opt imal for

the majority values of s≥1 , w here s is the speed rat io of the tw o machines.The largest gap between the competit ive ratio and the lower

bound is abou t 0.064.Moreover , the overall competi tive ratio 2 matches the overall lower bound.

　　Keywords:　schedul ing and covering , uniform machine , design and analysis of algorithm , onl ine , competitive ratio.

　　This paper considers the semi-online machine

covering problem on tw o uniform machines wi th the

known largest size.Machine covering problem has

application in the sequencing of maintenance actions

for modular g as turbine aircraf t engines
[ 1]
.New ap-

plications in online bandw idth allocation and resource

allocation were reported recently
[ 2]
.The problem dis-

cussed in this paper can be described as follow s.We

are given wi th a sequence J 1 , J 2 , …, Jn of indepen-
dent jobs , each job J j w ith a posi tive size p j.The

largest size of all jobs p max=max
1≤j≤n

pj is know n in ad-

vance.W.l.o.g., we assume pmax=1.Jobs arrive

one by one , and w e are required scheduling jobs irre-
vocably on machines as soon as they are given , w ith-
out any know ledge of the successive jobs except that

they have the size less than pmax.Let M1 , M 2 be

tw o parallel machines.The speed of Mi is si , i=1 ,
2 , i.e., the time used fo r J j to be scheduled on Mi is

pj/ si , j=1 ,2 , …, n , i=1 , 2.Assume 1=s1≤s2<

∞, and let s =s2/ s1 be the speed ratio of the two

machines.Jobs and machines are available at time ze-
ro , and no preemption is allow ed.The goal is to

maximize the minimum machine complet ion time.
We denote the problem by Q2 max Cmin.

Scheduling problems w ith partial informat ion of

future jobs are called semi-online problems
[ 3]
.Algo-

rithms for semi-online problems are called semi-online

algorithms.The quali ty of the performance of a semi-
online algorithm is measured by its competitive ratio.
We define the competi tive rat io fo r maximizat ion

problems.For an instance I and an algorithm A , let

C
A
(I)(or sho rt ly C

A
)be the objective value pro-

duced by A and let C
＊
(I)(or sho rt ly C

＊
)be the

optimal value in an offline version.Then the competi-
tive ratio of A is defined as the smallest number c

such that for any I , C
＊
(I)≤cC

A
(I).A semi-on-

line scheduling problem has a low er bound ρif there

is no semi-online algorithm w ith a competitive ratio

smaller than ρ.A semi-online algorithm A is called

optimal if i ts competi tive ratio matches the lower

bound of the problem.

Different kinds of partial info rmation give rise to

different semi-online problems , such as known total

size
[ 3]
(denoted by sum), known the largest size

[ 4]

(denoted by max), known the optimal value
[ 5]
(de-

noted by opt), and etc.Among these problems , that
in w hich the largest size is known in advance seems to

be the most dif ficult for algorithm design and analy-
sis.For example , there are semi-online algorithms for

Pm sum Cmax or Pm opt Cmax w ith competitive ratio

smaller than that of Pm online Cmax
[ 6 ,5]

.But no

such algo rithm has been reported for Pm max Cmax

to the authors' know ledge.Semi-online algori thm for

Q2 sum Cmin o r Q2 opt Cmin is opt imal for any s≥



1
[ 7 ,2]

.However , known algori thm for Q2 max Cmin

is only optimal for s=1 and
1+ 5

2
, and the largest

g ap between the competitive ratio and the low er

bound is about 0.55
[ 8]
.

In this paper , we w ill present the improved low er

bounds and semi-online algorithms for Q2 max Cmin.

In Section 1 , we prove the lower bound of the prob-
lem is at least

s+2
s+1

1 ≤ s ≤ 2

s 2 < s ≤
1 + 5

2

s+1
s

1 + 5
2

< s ≤1 + 2

s2+ s+1+ s4 - s2 +2s+1

s
2
+2 s

s ≥1 + 2

In Section 2 , we present semi-online algorithms with

competitive rat io
s+2
s+1

1 ≤ s ≤ 2

s 2 < s ≤
1+ 5

2

s+1
s

1 + 5
2 < s ≤ s1

s+1 + 5s
2
+6s+1

2(s+1)
s1 < s ≤ s2

s2 + s+1 + s4 -s2 +2s+1
s(s+2) s > s2

where

s1 =
1
3
+ 1

3
47
2
-

3 93
2

1
3

+
1
3

47
2 +

3 93
2

1
3

≈2.148

and

s2 =
2
3
+

1
3
(116 -6 78)

1
3

+ 1
3
(116 +6 78)

1
3 ≈3.836

Hence , the algorithms are optimal fo r s ∈[ 1 ,2.148)
∪[ 3.836 , ∞).The largest gap between the compet-
itive ratio and the low er bound is about 0.064.When

s tends to ∞, both the competi tive ratio and the low-
er bound tend to 2 , which is also the overall competi-
tive ratio and low er bound of the problem.

1　Lower bounds

The lower bounds of Q2 max Cmin will be

proved through Lemmas 1—3.

Lemma 1.The competitive rat io of any semi-on-
line algo rithm A fo r problem Q2 max Cmin is at least

s+2
s+1

when 1≤s≤ 2.

Proof.Let the first job J 1 be the largest job w ith

size 1.We consider two cases.

Case 1.J 1 is assigned to M 1.The sequence con-

tinues with a job J 2 of size
1

s+1
.If J 2 is also assigned

to M 1 , then no job comes.We get C
A
=0 , while

C
＊
=

1
s+1

.It follow s that
C
＊

C
A =∞>

s+2
s+1

.If J 2 is

assigned to M 2 , then the third job J 3 of size

s
2
+s-1
s+1 comes.If J 3 is assigned to M 1 , we have

C
A
=

1
s(s+1)

, and C
＊
=1 by assigning J 1 to M 1

and the other two jobs to M 2.It follow s that
C
＊

C
A =

s(s+1)>
s+2
s+1

.Otherw ise , if we assign J 3 to M2 ,

then the last job J 4 with size 1 comes.We have C
A
=

1 , and C
＊
=
s+2
s+1

by assigning J 1 , J 2 to M 1 and J 3 ,

J 4 to M 2.It implies that
C
＊

C
A =

s+2
s+1.

Case 2.J 1 is assigned to M 2.The sequence con-

tinues w ith a job J 2 of size
1+s-s

2

s
2
+s

.If J 2 is also as-

signed to M 2 , then no job comes.So w e get C
A
=0 ,

and C
＊
=

1+s-s
2

s
2
+s

, then
C
＊

C
A =∞>

s+2
s+1

.If we

assign J 2 to M1 , the third job J 3 of size s
s+1

comes.

If J 3 is assigned to M 2 , we have C
A
=
1+s-s

2

s
2
+s

, and

C
＊
=

1
s

by assigning J 1 to M 2 and J 2 , J 3 to M1.

Hence
C
＊

C
A =

s+1

1+s-s
2>

s+2
s+1

.Otherw ise , if w e as-

sign J 3 to M1 , then the last job J 4 of size 1 comes.

We obtain C
A
=

1
s
, and C

＊
=

2s+1
s
2
+s

by assigning

J 1 , J 2 to M 1 and J 3 , J 4 to M 2.Hence
C
＊

C
A =

2s+1
s+1

≥
s+2
s+1.

Lemma 2.The competitive rat io of any semi-on-
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line algorithm A for problem Q2 max Cmin is at least

min s ,
s+1
s

when 2<s<1+ 2.

Proof.The first job J 1 has size
1
s
.We consider

tw o cases.

Case 1.J 1 is assigned to M1.The sequence con-
tinues with the largest job J 2 of size 1.If J 2 is also

assigned to M 1 , then no job comes.We get C
A
=0 ,

and C
＊
= 1

s
. It follow s that C

＊

C
A = ∞ >

min s ,
s+1
s

.If w e assign J 2 to M 2 , then the last

job J 3 of size 1 comes.We get C
A
=

1
s
, and C

＊
=

min
s+1
s
2 ,1 by assigning J 2 to M 1 and J 1 , J 3 to

M 2 , then we have
C
＊

C
A =min s ,

s+1
s

.

Case 2.J 1 is assigned to M2.The sequence con-
tinues wi th the largest job J 2 of size 1.I t is obvious

that J 2 must be assigned to M 1.So w e get C
A
=

1

s
2 ,

and C
＊
=

1
s
, then

C
＊

C
A =s≥min s ,

s+1
s

.

Let α=
1-s

2
+ s

4
-s

2
+2s+1

s
be the bigger

root of equation
1+x
sx

=
2

1+
2
s
-x

regarding x .

Note that 0<α≤1
s

when s≥1+ 2.

Lemma 3.The competitive ratio of any semi-on-
line algorithm A for problem Q2 max Cmin is at least

1+α
sα
=

s
2
+s+1+ s

4
-s

2
+2s+1

s
2
+2s

when s≥1 +

2.

Proof.The first job J 1 has size α.We consider

tw o cases.

Case 1.J 1 is assigned to M1.The sequence con-
tinues wi th the largest job J 2 of size 1.Obviously J 2

can not be assigned to M 1 , so we assign J 2 to M 2 ,
and J 3 of size 1 comes.If we also assign it to M 2 , we

can get C
A
=αand C

＊
=
1+α
s

by assigning J 2 to M 1

and J 1 , J 3 to M 2 , then
C
＊

C
A =

1+α
sα
.If we assign J 3

to M 1 , then the last job of size
2
s
-αcomes.We

have C
A
≤
1+2

s
-α

s
, and C

＊
=

2
s

by assigning J 1 ,

J 4 to M 1 and J 2 , J 3 to M 2.Then it follow s that
C
＊

C
A

=
2

1+
2
s
-α
=
1+α
sα
.

Case 2.J 1 is assigned to M 2.Then the last and

the largest job comes.Obviously we must assign i t to

M 1 , and get C
A
=α

s
, C

＊
=α.Hence C

＊

C
A =s >

1+α
sα

when s≥1+ 2.

2　Algorithms

In this section we w ill present tw o algorithms for

Q2 max Cmin.Fast First List Scheduling (FFLS for

sho rt) and Slow First List Scheduling (SFLS for

sho rt)are designed for smaller and larger s , respec-
tively.Bo th algorithms consist of two phases.In the

second phase , they use LS rule to assign jobs , where

LS rule always assigns jobs to the machine w hich can

start to process the job earlier
[ 9 , 6]

.

Denote by Jmax the fi rst job of size pmax=1.De-
fine the load of a machine as the total size of jobs as-
signed to it.Let L(Mi)be the load of Mi af ter all

the jobs are scheduled by a given algorithm A , i=1 ,

2.Therefore , C
A
=min L(M 1),

L(M 2)
s

.Note

that
L(M 1)+L(M 2)

s+1
is an upper bound on C

＊
.

Hence , if C
A
=L(M 1), then

C
＊

C
A ≤

L(M 1)+L(M 2)
s+1
L(M1)

=
1

s +1
1 +

L(M 2)
L(M 1)

Otherwise , C
A
=
L(M 2)

s
, then

C
＊

C
A ≤

L(M 1)+L(M 2)
s+1
L(M2)

s

=
s

s +1 1 +
L(M 1)
L(M 2)

The following lemma describes an impo rtant property

of LS rule.

Lemma 4.(1)If L(M 1)≥
L(M 2)

s
and the last
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job on M1 is assigned by LS rule , then L(M 1)≤
L(M 2)

s
+1.

(2)If
L(M2)

s
≥L(M1)and the last job on M 2

is assigned by LS rule , then L(M 2)≤sL(M 1)+1.

Proof.(1)Suppose the last job on M 1 is Ja of

size pa.Denote by L
a
(Mi)the load of M i just before

J a is assigned , i=1 ,2.By LS rule , we have L(M 1)

-pa =L
a
(M 1)≤

L
a
(M 2)
s

≤
L(M 2)

s
, which im-

plies that L(M 1)≤
L(M 2)

s
+pa≤

L(M 2)
s

+1.

(2)Similar to (1), suppose the last job on M 2 is

J b of size pb .Denote by L
b
(Mi)the load of M i just

befo re Jb is assigned , i=1 ,2.By LS rule , we have

L(M 2)-pb
s

=
L
b
(M 2)
s

≤L
b
(M 1)≤L(M 1), that

is L(M 2)≤sL(M1)+pb≤sL(M 1)+1.

Let

γ1=max s , s+2
s+1

=

s +2
s +1

1 ≤s ≤ 2

s 2 < s ≤
1+ 5

2

Algorithm.FFLS.

Phase 1.Alw ays assign current job J to M 2 ,
unless one of the following two cases happens.

(1.1)J is Jmax.Then assign J to M 1 , go to

Phase 2.

(1.2)If J is assigned to M 2 , the new load of

M 2 w ill be greater than
s

(s+1)(γ1-1)
, and J is

not Jmax.Then assign J to M 2 , go to Phase 2.

Phase 2.Assign all the remaining jobs by LS

rule.

Lemma 5.L(M 2)≥
1

(s+1)(γ1-1)
.

Proof.If Jmax is assigned to M 1 , then L(M 1)

≥1=
1

(s+1)
s+2
s+1

-1
≥

1
(s+1)(γ1-1).Other-

wise , Jmax must be assigned to M 2 in Phase 2.De-

note by L
max
(M i)the loads of Mi just before Jmax is

assigned , i=1 ,2.If L
max
(M 2)<

s
(s+1)(γ1-1),

Jmax will be assigned to M 1 in Phase 1 , which is a

contradiction.Therefo re , L (M 1)≥L
max
(M 1)≥

L
max
(M2)
s

≥ 1
(s+1)(γ1-1)

.

Theorem 1.The competi tive ratio of the alg o-

rithm FFLS fo r Q2 max Cmin when 1<s≤
1+ 5

2
is

at most γ1.

Proof.We distinguish tw o cases acco rding to the
value of L(M 2).

Case 1.L(M 2)<
s

(s+1)(γ1-1)
.

In this case , Jmax is assigned to M 1 in Phase 1 ,

and it is the only job assigned to M1 due to
L(M 2)

s
<

1
(s+1)(γ1-1)

≤1.Therefo re L (M 1)=1 and

C
FFLS
=

L(M2)
s

.If L(M 2)≤
1
s
, then

C
＊

C
FFLS =

L(M2)
L(M2)

s

=s≤γ1.If

1
s
<L(M 2)<

s
(s +1)(γ1 -1)

then

C
＊

C
FFLS≤

s
s+1

1 +
L(M1)
L(M2)

≤ s
s +1

1 + 1
1
s

= s ≤γ1

Case 2.L(M 2)≥
s

(s+1)(γ1-1)
.

Subcase 2.1.C
FFLS
=L(M 1).

If there is no job assigned to M 2 in Phase 2 ,

then L (M 2)< pmax +
s

(s+1)(γ1-1)
=1 +

s
(s+1)(γ1-1), and Jmax is assigned to M 1.Hence

L(M 1)≥1 , and

C
＊

C
FFLS ≤

1
s +1

1 +
L(M 2)
L(M 1)

≤
1

s +1
1 +1+

s
(s +1)(γ1 -1)
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≤
1

s +1
2 +

s

(s +1) s+2
s+1

-1

=
s +2
s +1 ≤γ1

　　If there are some jobs assigned to M 2 in Phase 2 ,
by Lemmas 4(2)and 5 , we have L(M 2)≤sL(M 1)
+1≤((s+1)γ1-1)L(M1).Hence

C
＊

C
FFLS≤

1
s+1

1 +
L(M 2)
L(M 1)

≤
1

s+1
(1 +(s +1)γ1 -1)=γ1

　　Subcase 2.2.C
FFLS
=
L(M 2)

s
.

If there are some jobs assigned to M 1 in Phase 2 ,

we have L(M 1)≤
L(M 2)

s
+1 by Lemma 4(1).If

there is no job assigned to M 1 in Phase 2 , Jmax must

be assigned to M 1 in Phase 1.In fact , by the descrip-
tion of FFLS , only Jmax can be assigned to M 1 in

Phase 1 , and Jmax can no t be assigned to M 2 in Phase

1.If Jmax is assigned to M 2 in Phase 2 , i t is assigned

by LS rule , which contradicts to the fact that no job

is assigned to M 1 when Jmax comes.Therefore , we

also have L(M 1)=1≤
L(M 2)

s
+1.Hence

C
＊

C
FFLS≤

s
s +1

1 +
L(M 1)
L(M 2)

≤
s

s +1
1 +

L(M 2)
s

+1
1

L(M 2)

≤ s
s +1 1 +

1
s
+
(s +1)(γ1 -1)

s
=γ1

The proof is thus finished.

Let

γ2=max
s+1
s
,
1+ s+ 5 s2 +6s+1

2(s+1)
,

　
1+ s+ s

2
+ s

4
-s

2
+2 s+1

s(s+2)

=

s+1
s

1 + 5
2

< s ≤ s1

1 +s+ 5s
2
+6s+1

2(s+1)
s1 < s ≤ s2

1 +s+ s
2
+ s

4
-s

2
+2s+1

s(s+2)
s > s2

where
s+1+ 5s

2
+6s+1

2(s+1)
is the biggest root of e-

quation
s(s+1)x

2
-sx -s

2

(s+1)
2
(x

2
-x)-s

= x regarding x , and

s
2
+s+1+ s

4
-s

2
+2s+1

s(s+2)
is the big ger roo t of e-

quation
1

sx -1
=
(s+2)x -2 x

sx
regarding x .We call

J is a big job if J is not Jmax and the size of J lies in

the interval
s+1
s
γ2-1-

1
(s+1)(γ2-1)

,1 .

Algorithm.SFLS.

Phase 1.

(i)Alw ay s assign the current job J to M 1 , un-
less the new load of M 1 w ill be greater than

1
(s+1)(γ2-1)

by assigning J to M 1.

(1.1)If by assigning J to M1 , the new load of

M 1 would be in the interval

1
(s +1)(γ2 -1)

,
s+1
s
γ2 -1

then assign J to M 1 , go to Phase 2.

(1.2)If by assigning J to M1 , the new load of

M 1 would be greater than
s+1
s
γ2-1 , and J is Jmax ,

then assign J to M 2 , return to Step 1 of Phase 1.

(1.3)If by assigning J to M1 , the new load of

M 1 would be greater than s+1
s
γ2-1 , and J is not

Jmax , then go to Step 2.

(ii) If the current load of M 1 is less than

1
sγ2-1

, then assign J to M 1 , go to Phase 2.Other-

wise , go to Step 3.

(iii)If there is already a big job on M 2 , then as-
sign J to M 1 , go to Phase 2.Otherwise , assign J to

M 2 , return to Step 1 of Phase 1.

Phase 2.Assign all the remaining jobs by LS

rule.

Note that

1
sγ2 -1

<
1

(s +1)(γ2 -1)
<

s +1
s
γ2 -1

when s>1+ 5
2
, so the algori thm SFLS is w ell de-

fined.Moreover , as
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s +2
s +1

<
s +1
s
≤γ2 <

2s +1
s +1

1
s
<

1
(s+1)(γ2 -1)<1

　　Theorem 2.The competitive ratio of the algo-

rithm SFLS fo r Q2 max Cmin when s>
1+ 5

2
is at

most γ2.

Proof.We distinguish two cases according to the

value of L(M1).

Case 1.L(M1)<
1

(s+1)(γ2-1)
.

If L(M 1)≤
1
s
, there is only one job Jmax as-

signed to M 2 , SFLS yields an optimal solution.

If
1
s
<L(M1)<

1
(s+1)(γ2-1)

, consider the

jobs assigned to M 2.If there is only one job , Jmax ,

assigned to M 2 , then

C
SFLS
=

L(M 2)
s

=
1
s
<L(M 1)

Hence

C
＊

C
SFLS ≤

s
s +1

1+
L(M 1)
L(M 2)

<
s

s +1
1+

1
(s +1)(γ2 -1) ≤γ2

The last inequality is due to

γ2≥
1 +s + 5s

2
+6s +1

2(s +1)

≥
2s +1 + 4s +1

2(s +1)
(1)

　　Otherw ise , we conclude that there must be two

jobs , Jmax and a big job , denoted by J′with size p′,

assigned to M 2.In fact , by the description of SFLS ,
the algori thm will no t enter Phase 2 unless the cur-

rent load of M1 is greater than
1

(s+1)(γ2-1)
.

Moreover , M 2 processes at most two jobs in Phase 1.
Hence

L(M 2)= p′+1

≥
s +1
s
γ2 -1 - 1

(s +1)(γ2 -1)+1

=
s +1
s
γ2 -

1
(s +1)(γ2 -1)

(2)

　　If C
SFLS
=
L(M 2)

s
, by (1)and (2),

C
＊

C
SFLS ≤

s
s +1

1+
L(M 1)
L(M 2)

≤
s

s +1
1+

1
(s +1)(γ2 -1)

s +1
s
γ2 -

1
(s +1)(γ2 -1)

≤γ2

　　If C
SFLS
=L(M 1), consider the assignment of

Jmax and J′in the optimal schedule.If Jmax and J′are

assigned to the same machine , then we can get C
＊
≤

L(M 1)=C
SFLS
, SFLS yields an optimal schedule.If

Jmax and J′are assigned to the dif ferent machines , we

have C
＊
≤
L(M1)+p′

s
.Hence ,

C
＊

C
SFLS ≤

1
s

1 +
p′

L(M 1)
≤

1
s

1+
1

L(M1)

≤
s +1
s
≤γ2

　　Case 2.L(M 1)≥
1

(s+1)(γ2-1)
.

In this case , algori thm SFLS must stop at Phase

2.We distinguish the three subcases based on the

step by which Phase 1 enters Phase 2.

Subcase 2.1.Algorithm SFLS enters Phase 2 by

Step(1.1).The load of M 1 at the beginning of

Phase 2 is grater than
1

(s+1)(γ2-1)
.

If C
SFLS
=L(M 1)and there are jobs assigned to

M 2 in Phase 2 , f rom Lemma 4(2)we can see

L(M2)≤sL(M 1)+1

≤sL(M 1)+(s +1)(γ2 -1)L(M 1)

=((s +1)γ2 -1)L(M1)

Hence ,

C
＊

C
SFLS≤

1
s +1

1 +
L(M 2)
L(M 1)

≤ 1
s +1

(1 +((s +1)γ2 -1))=γ2

　　If C
SFLS
=L(M 1)and there is no job assigned to

M 2 in Phase 2 , Jmax and at most one big job are as-

signed to M 2 in Phase 1.Hence , L(M 2)≤2 and

C
＊

C
SFLS≤

1
s+1

1 +
L(M 2)
L(M 1)
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≤
1

s +1
1 +

2
1

(s +1)(γ2 -1)

≤γ2

The last inequality is due to γ2≤
2s+1
s+1

.

If C
SFLS
=
L(M 2)

s
and there is no job assigned

to M 1 in Phase 2 , we have

1
(s +1)(γ2 -1)

≤L(M 1)≤
s +1
s
γ2 -1

and L(M 2)≥1 , since Jmax must be assigned to M 2.

Therefore ,

C
＊

C
SFLS≤

s
s+1

1 +
L(M 1)
L(M 2)

≤
s

s+1
1 +

s +1
s
γ2 -1 =γ2

　　If C
SFLS
=
L(M 2)

s
and there are jobs assigned to

M 1 in Phase 2 , then
L(M 2)

s
≥

1
(s+1)(γ2-1)

by

LS rule.By Lemma 4(1), we have L (M 1)≤

L(M 2)
s

+1.Hence ,

L(M 1)≤
1+(s +1)(γ2 -1)

s
L(M 2)

and

C
＊

C
SFLS ≤

s
s +1

1 +
L(M 1)
L(M 2)

≤
s

s +1 1 +
1 +(s +1)(γ2 -1)

s
=γ2

　　Subcase 2.2.Algorithm SFLS enters Phase 2 by

S tep 2 of Phase 1.The load of M 1 at the beginning of

Phase 2 is g rater than s+1
s
γ2-1.

If C
SFLS
=L(M 1), by Lemma 4(1)we have

L(M2)≤ sL(M 1)+1

≤ s +
s

(s +1)γ2 -s L(M 1)

Hence , by (1),

C
＊

C
SFLS ≤

1
s +1

1+
L(M 2)
L(M 1)

≤
1

s +1
1+s +

s
(s +1)γ2 -s

≤γ2

　　If C
SFLS
=
L(M 2)

s
and there are jobs assigned to

M 1 in Phase 2 , then

L(M2)
s

≥
s +1
s
γ2 -1

By Lemma 4(1), we have

L(M1)≤
L(M 2)

s
+1

≤
1
s
+

1
(s +1)γ2 -s L(M 2)

Combining with(1),

C
＊

C
SFLS ≤

s
s +1

1+
L(M 1)
L(M 2)

≤ s
s +1

1+ 1
s
+ 1
(s +1)γ2 -s

≤γ2

　　 If C
SFLS
=

L(M 2)
s

and there is no job assigned

to M 1 in Phase 2 , then the last job assigned to M 1 is

a big job J″of size p″.Deno te by L″(M 1)the load of

M 1 just before J″is assigned.Then L″(M 1)≤

1
sγ2-1

and L(M 1)=L″(M 1)+p″.Note that Jmax

is assigned to M 2.Let the to tal size of jobs assigned

to M 2 other than Jmax be L″(M 2), i.e., L(M2)=
L″(M2)+1.

If L(M 1)≤
s+1
s
γ2-1 L(M 2), then

C
＊

C
SFLS ≤

s
s +1

1+
L(M 1)
L(M 2)

≤
s

s +1
1+

s +1
s
γ2 -1 =γ2

Otherwise ,

L(M 1)>
s +1
s
γ2 -1 L(M 2)

Consider the assignment of Jmax and J″in the optimal

schedule.If Jmax and J″are assigned to the dif ferent

machines ,

C
＊
≤

L″(M 1)+L″(M 2)+1

s

Since

L″(M 1)≤
1

sγ2 -1
≤ 1

s
≤ 1

s
(1 +L″(M 2))

C
＊

C
SFLS ≤

L″(M 1)+L″(M 2)+1

L″(M 2)+1 ≤1+
1
s
≤γ2

If Jmax and J″are assigned to the same machine in the

optimal schedule , we have

C
＊
≤L″(M1)+L″(M 2)

Since

s+1
s
γ2 -1 (L″(M 2)+1)

　= s +1
s
γ2 -1 L(M 2)< L(M1)
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　=L″(M 1)+p″≤L″(M 1)+1

and

L″(M 1)<
1

sγ2 -1 ≤
(s +2)γ2 -2s

sγ2

due to γ2≥
s
2
+s+1+ s

4
-s

2
+2s+1

s(s+2)
, we have

sL″(M 1)+(s -γ2)L″(M2)

　≤ sL″(M 1)+(s -γ2)
s(L″(M 1)+1)
(s +1)γ2 -s

-1

　= s
2
γ2

sL″(M1)+1

(s+1)γ2 -s
-2s+γ2

　≤ s
2
γ2

(s +2)γ2 -2s

sγ2
+1

(s +1)γ2 -s
-2s +γ2

　=
s(s +2)γ2 -2s

2
+s

2
γ2

(s+1)γ2 -s
-2s +γ2 =γ2

Hence ,
C
＊

C
SFLS ≤

s(L″(M1)+L″(M2))
1+L″(M 2)

≤γ2.

Subcase 2.3.Algorithm SFLS enters Phase 2 by

S tep 3 of Phase 1.

If C
SFLS
=L (M 1), or C

SFLS
=

L(M 2)
s

and

there are jobs assigned to M 1 in Phase 2 , the proof is

the same as Subcase 2.2.

If C
SFLS
=
L(M2)

s
, and there is no job assigned

to M1 in Phase 2 , then L(M 1)<
1

(s+1)(γ2-1)
+

1.By the descript ion of SFLS , we know that a big

job J′of size p′is assigned to M2 in Phase 1.And

J max , no mat ter w hether it is assigned in Phase 1 o r

Phase 2 , is also assigned to M 2.Therefore ,
L(M 2)≥ p′+1

≥
s+1
s
γ2 -1 -

1
(s +1)(γ2 -1)

+1

=
s+1
s
γ2 -

1
(s +1)(γ2 -1)

and w e obtain

C
＊

C
SFLS=

s
s +1

1 +
L(M 1)
L(M 2)

≤
s

s +1
1+

1+
1

(s +1)(γ2 -1)
s+1
s
γ2 -

1
(s+1)(γ2 -1)

≤γ2
where the last inequality is equivalent to

((s+1)γ2-s)((s+1)γ
2
2-(s+1)γ2-s)≥0

which is valid by the def inition of γ2.The proof is

thus finished.

By Theorems 4 and 5 , we know that FFLS is an

optimal algo rithm for 1≤s≤1+ 5
2
, and SFLS is an

optimal algo rithm for s ∈[ 1.618 , 2.148] ∪ [ 3.836 ,
∞).For the interv al(2.148 , 3.836)in w hich SFLS

is not optimal , the competi tive ratio of SFLS is

monotone increasing .On the other hand , it can be

verified directly that
s+1
s

is monotone decreasing

w hen

s ∈ [ 2.148 ,2.414]

and
s
2
+s+1+ s

4
-s

2
+2s+1

s
2
+2s

is monotone in-

creasing when s ∈ [ 2.414 , 3.836] .Hence , the

largest g ap between the competi tive ratio and the

low er bound for any s is
1+2 2+1-2 2

2 ≈

0.064 , which achieves at 1+ 2≈2.414.Moreover ,
the overall competitive ratio 2 , which achieves when

s tends to ∞, also matches the overall lower bound.
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