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Abstract

This paper investigates the semi-online scheduling problem with the known largest size on two uniform machines. T he

objective is to maximize the minimum machine completion time. Both low er bounds and algorithms are given Algorithms are optimal for

the majority values of s==1, where sis the speed ratio of the two machines. The largest gap between the competitive ratio and the lower

bound is about 0. 064. Moreover, the overall competitive ratio 2 matches the overall lower bound.

Keywords:

This paper considers the semi-online machine
covering problem on two uniform machines with the
known largest size. Machine covering problem has
application in the sequencing of maintenance actions

for modular gas turbine aircraft engines[ T New ap-
plications in online bandwidth allocation and resource
7. The problem dis-

cussed in this paper can be described as follows. We

allocation were reported recently[

are given with a sequence Ji, J2, -*5 J, of indepen-
dent jobs each job J; with a positive size p;. The
largest size of all jobs pma= max p is known in ad-
vance. W.l.0.g., we assume pnm.n= 1. Jobs arrive
one by one, and we are required scheduling jobs irre-
vocably on machines as soon as they are given, with-
out any know ledge of the successive jobs except that
they have the size less than pua. Let My, Mo> be
two parallel machines. The speed of M; is s;» i=1,
2, i.e., the timeused forJ;tobe scheduled on M; is
pi/sis j= 1,2 -y ny i=1, 2. Asume 1= 5;< 57
o3 and let s= 52/ 51 be the speed ratio of the two
machines. Jobs and machines are available at time ze-
ro, and no preemption is allowed. The goal is to
maximize the minimum machine completion time.

We denote the problem by Q2/max!| Cyin.

Scheduling problems with partial information of

future jobs are called semi-online problems[ ¥ Algo-
rithms for semi-online problems are called semi-online

scheduling and covering. wniform machine, design and analysis of algorithm online competitive ratio.

algorithms. The quality of the performance of a semi-
online algorithm is measured by its competitive ratio.
We define the competitive ratio for maximization
problems. For an instance / and an algorithm A4, let

c' (1) (or shortly ") be the objective value pro-

duced by 4 and let C () (or shortly C ) be the
optimal value in an offline version. Then the competi-
tive ratio of A4 is defined as the smallest number ¢

such that for any I, C (D<cC" (D). A semion-
line scheduling problem has a lower bound € if there
is no semi-online algorithm with a competitive ratio
smaller than ©. A semi-online algorithm A is called
optimal if its competitive ratio matches the lower

bound of the problem.

Different kinds of partial information give rise to
different semi-online problems such as known total

size 7 (denoted by sum), known the largest sizel "

(denoted by max), known the optimal value > (de-
noted by opt)s and etc. Among these problems, that
in which the largest size is known in advance seems to
be the most difficult for algorithm design and analy-
sis. For example, there are semi-online algorithms for

Pm| sum| C oy O Pm| 0pt| C,ax With competitive ratio
[6.5]

smaller than that of Pm | online | C,,,, But no
such algorithm has been reported for Pm| max| C,,,
to the authors’ knowledge. Semi-online algorithm for

02 sum| C,;, or Q2| 0pt| C inis optimal for any s=
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[7.2]

1 . However, known algorithm for Q2| max| C,;

1+J5

is only optimal for s=1 and > and the largest

gap between the competltlve ratio and the lower
bound is about 0.55" .

In this paper; we will present the improved lower
bounds and semi-online algorithms for Q2| max| C,;,.

In Section 1, we prove the lower bound of the prob-

lem 1is at least
s+ 2

s+ 1 1= s
s ﬁ<s<%’5
stl 1+25< <1+ [
2 )
s+s+1+2s s+ 25+ 1 =1+

s+ 2s

In Section 2, we present semi-online algorithms with
competitive ratio

s+2 1< s< 2

s J2< s< %’5

+ 1 1+

SS #< S< 5
7

st 1+2(S§.:14;6s+1 5, <5< 5,

S+ st 1+ [st— s+ 25+ 1 ~
sCs+2) 5~ 52

w here

1
L1 3
S1:§+ ?{%_ 3 293}

1

L47 3./03|°

2
3

1
+ %(1164—6 J78)3

Hence, the algorithms are optimal for s €[ 1, 2. 148)
U 3.836, ). The largest gap between the compet-
itive ratio and the low er bound is about 0.064. When
s tends to 3 both the competitive ratio and the low -

2. 148

and

Sy, —

1
+%(116—6 J78)3

~3.836

er bound tend to 2, which is also the overall competi-
tive ratio and low er bound of the problem.

1 Lower bounds

The lower bounds of 02| max | Cuin will be
proved, through Lemmas 1—3.

Lemma 1. The competitive ratio of any semi-on-
line algorithm A for problem Q2| max| C,; is at least

i% w hen l<s<,/_2.

Proof. Let the first job Ji be the largest job with

size 1. We consider two cases.

Case 1. Jis assigned to M.

The sequence con-
tinues with a job J2 of size Sj—_l If J2 is also assigned

We get Cc'=0, while

st2
s+1°

then the third job J3 of size

to M1, then no job comes.

:ﬁ. It follows that g =oo>"—"=, If J,is

assigned to Mo,
sSs—1
s+1

comes. If J3 is assigned to M1, we have

s and C =1 by assigning Ji to M,

_ 1
Cos(stD i
and the other two jobs to M,. It follows that CF:

Si? Otherwise, if we assign J3 to M,,

s(s+1)>
then the last job J 4 with size 1 comes. We have c'=
I, and C *:%by assigning J, J,to M and J3,

J4to My, Tt implies that CF: %

*

Case 2. Jis assigned to M>. The sequence con-
2

tinues with a job J> of size M If J5 is also as-
s+ s

signed to Mo, then no job comes. So we get = =0,

and C = IJSFS_’_S , then CF o> Sj;_% If we

assign J, to My, the third job J; of sizeS—_';‘L1 comes.

2
If J5is assigned to M,, we have CA:%, and
st
C*:Si by assigning Ji to M> and Jo, J3 to M.

Hence EA— l—i:'r—l sz> ii% Otherwise, if we as-

sign J3 to M, then the last job J, of size 1 comes.

We obtain CA— 2§+1
s Ts

Ji1. Joto My and J3, J4to M>. Hence CF:

P and C = by assigning

2s+1
s+1

s+2
>s—|—1

Lemma 2. The competitive ratio of any semi-on-



Progress in Natural Science Vol. 17 No. 11

2007 www. tandf. co. uk/ journals 1273

line algorithm A for problem 02l max| C,;,is at least

mi s,is1 when /2< s 1+/2.

Proof. The first job J; has size si We consider

two cases.

Case 1. J| is assigned to M.
tinues with the largest job J, of size 1. If J, is also

The sequence con-

assigned to M1, then no job comes. We get CA:O,

and ¢ = L. It follows that & = o>
s c!

min{s, ﬁTl} . If we assign J, to M,, then the last

job J3 of size 1 comes. We get CA:%, and C =

s+1
mi by assigning J, to M, and J,, J3 to
s

M7, then we have CA mm{ S S+l}
s

Case 2. J is assigned to M>. The sequence con-

tinues with the largest job J, of size 1. It is obvious

that J2 must be assigned to M. So we get c'= LZ?

and C = L, then C—A=s>mir{s, S+—1} .
s C

s
Let a= =5t ) ; S5+ 1 be the bigger
e 2 .
root of equation = regarding x.
85X 2
1+ X

Note that 0<< a<% when s=>1-+/2.

Lemma 3. The com petitive ratio of any semi-on-
line algorithm A4 for problem Q2| max| C,,;,is at least

Ita s et 1t s — s 2s
sa s*2s

J2.

when s=1-+

Proof. The first job J| has size a. We consider

two cases.

Case 1. J| is assigned to M.
tinues with the largest job J, of size 1. Obviously J,

The sequence con-

can not be assigned to M, so we assign J, to M,
and J3 of size 1 comes. If we also assign it to M,, we

«_1ta

can get C'=caand C = by assigning J, to M,

If we assign J;

g
and J|, Jiyto M,, then %:s_aa'

to M, then the last job of size %— a comes. We

1+—— a .
have C'<< , and C = by assigning J,

*

Jsto Miand Jy, J3to M>. Then it follows that Z_A
2 I
2 s C

1+«
s

Case 2. J, is assigned to M,. Then the last and

the largest job comes. Obviously we must assign it to
My, and get c'=% ' =a

1+«
S

Hence CF = 5>

when s=1+/2.

2 Algorithms

In this section we will present two algorithms for
02|max| Cpin. Fast First List Scheduling (FFLS for
short ) and Slow First List Scheduling (SFLS for
short) are designed for smaller and larger s, respec-
tively. Both algorithms consist of two phases. In the
second phase, they use LS rule to assign jobs, where
LS rule always assigns jobs to the machine which can

. |9
start to process the job carliel

1. De-

fine the load of a machine as the total size of jobs as-

Denote by J . the first job of size p .=

max

signed to it. Let L (M;) be the load of M, after all

the jobs are scheduled by a given algorithm , =1,
L

2. Therefores C'= min{gL(j\/[1 ), M . Note

LMD+LM,) *
that P is an upper bound on C .

Hence, if CA:L(MI), then
LMD+ LM,

c’ s+1 1 L (M>)

ST L _s+1[1+L(M1)
L(M,)

Otherwise, C'= 2 , then

LM+ L (M)

c’ s+ 1 __s LMy

oS L(My) s+1{1+L(M2)
s

The following lemma describes an important property

of LS rule.

L (M)
Lemma4. (1) If L (M )= and the last
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job on M is assigned by LS rule, then L (M )<
L (M)
21

L(My)

) 1If —=L(M;) and the last job on M,
is assigned by LS rule, then L (M)<<sL (M +1.

Proof. (1) Suppose the last job on M is Ju of

size pa. Denote by L (M;) the load of M; just before
J,is assigned, i=1,2. By LS le, we have L (M)

La(M2)<L(M2)

=" 5 = which im-

L (M,)
S2+1.

—pa=L" (M)<

L (M)
plies that L (M )<< p 2

Tp~

(2) Similarto (1), suppose the last job on M,is
Jy of size p,. Denote by Lb(Mi) the load of M; just
before Jp is assigneds i=1,2. By LS rule, we have

LM)—p, L'(My
i Py _ ; S P (MO<L (M) that

is L (M2)<SL(M1 )+pb<SL (M1)+1.

s+2
B S+1 1<S<»/_2
K J_2<s<1+ 3

Algorithm. FFLS.

Phase 1. Always assign current job J to Mo,
unless one of the following two cases happens.

(1.1) J is J - Then assign J to M|, go to
Phase 2.

(1.2) If J is assigned to M,, the new load of

. s .
M, will be greater than D —1) and J is
not Jmax. Then assign J to M2, go to Phase 2.

Phase 2. Assign all the remaining jobs by LS
rule.

1
(T —1D)"

Proof. If J,,, is assigned to M, then L (M)

1
J = G D=1+ Other

Lemma 5. L (M,)>

B 1
=1= st2

st1 1

(s—|—1)t

must be assigned to M, in Phase 2. De-
" (M) the loads of M; just before J ., is

wise, J

max

note by L
assigned, i=1,2. If L™ (M2)< my
 max
contradiction. Therefore, L (M)=L"" (M) =

Lmax(Mz) 1
/(S+ 1) (71_1)'

will be assigned to M, in Phase 1, which is a

Theorem 1. The competitive ratio of the algo-

rithm FFLS for 02| max| C,;, when sg%ﬁ is

at most 7.

Proof. We distinguish two cases according to the
value of L (M,).

s
Case 1. L (M,)<< GED—1)

is assigned to M in Phase 1,

. . . L (M)
and it is the only job assigned to M, due to T<

N W

(s LOM)

In this case, J

max

1. Therefore L (M,;) =1 and

*

C
FFLS

C

L If L(M2)<%, then

1 s
s LM = TN T

then

R TS B
C”LS\erl{hLL(Mz) <s+1t1Jr 1

S
= s 7

S
Caw 2. L (M2)>(S_’_1)<y1_1>.

Subcase 2.1. CFFLS: LM).

If there is no job assigned to M5 in Phase 2,

s
then L (M2)< Pmax + (S+1)(71_1) - 1+

(s+l)?71*1)’ and Jmax 1s assigned to M. Hence

L (M1)>1, and

c’ 1 L (M>)
CFFL5< st1 T (Ml)}

1
< 1

S
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( |

R

<
st 1

1
s+ 1
+2
="

If there are some jobs assigned to M, in Phase 2,
by Lemmas 4(2) and 5, we have L (My)< sL (M)
FI<<((s+1)Yi—DL(M;). Hence

c’ 1 LM,
CFFLS< st+1 1+L(M1)
<S+%<1+<s+1>v,—1>: v,
FFLS L (M)
Subcase 2.2. C = e .

If there are some jobs assigned to M in Phase 2,
L (M)

s
there is no job assigned to M in Phase 2, J

we have L (M )<< +1 by Lemma 4(1). If

max ust
be assigned to M in Phase 1. In fact, by the descrip-
tion of FFLS, only J
Phase 1, and J
1. If J . is assigned to M, in Phase 2, it is assigned
by LS rule, which contradicts to the fact that no job
is assigned to M| when Jyax comes. Therefore, we
also have L (M)=1<C L (?42)

C ) 5 LM

o | I L (Mz)}

X

can be assigned to M, in

max

can not be assigned to M, in Phase

max

+1. Hence

S—’_l{ L(Mz)
< Ky L (S+1)<7171) _
\SJFI 1+ < + s yl
The proof is thus finished.
Let
Y= me st 1 1+ s+ J552+ 65+ 1
- ma s 2(s+ D ’
1+ s+ s+ ,/s4— ss+2st 1
s(s+2)
St ! %ﬁ< S sy
F)
_ 1+S+2(S§:;:6S+1 0< < 5
1+ s+ 2+ Js—s +2s+ 1 -
s(s+2) 5 5
st 1+ /55" +6s+1 . .
w here G is the biggest root of e-

sGsFDx—sx—s”

(st D*(x*—x)—s

s’ st N s'— s 25+l .

(st ) is the bigger root of e-

1 (sF2)x—2x
—1 sX
J is abig job if J is not Jnax and the size of J lies in

the interval [ %VZ* 1—

quation = x regarding x, and

quation o regarding x. We call

1 1]
G+Dn,—D" 1
Algorithm. SFLS.

Phase 1.

(i) Always assign the current job J to M, un-

less the new load of M; will be greater than

1 -
G (D by assigning J to M.

(1.1 If by assigning J to M|, the new load of
M1 would be in the interval
[ 1 st 17 o 1]
+Dr—1) s "2

then assignJ to M, go to Phase 2.

(1.2) If by assigning J to M|, the new load of

M| would be greater than %Yz—l, and J is J

max®

then assignJ to M3, return to Step 1 of Phase 1.

(1.3) If by assigning J to M, the new load of
M, would be greater than %Yz— 1, and J is not

Jmaxe then go to Step 2.

(i) If the current load of M, is less than

EvR— then assign J to M, go to Phase 2. Other-

wise, go to Step 3.

(ii1) If there is already a big job on M,, then as-
sign J to M, go to Phase 2. Otherwise, assign J to
M5, return to Step 1 of Phase 1.

Phase 2. Assign all the remaining jobs by LS

rule.

Note that

1 1 st+1,
s72*1< (s+1)(72*1)< s 2 !

when s> %&, so the algorithm SFLS is well de-

fined. Moreover ;as
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s+2 s+1 2s +1
s+1 s RER s+ 1
1
I (s+1)(72 1)< I

Theorem 2. The competitive ratio of the algo-

rithm SFLS for Q2| max| C,;, when s> %ﬁ is at

most 7.

Proof. We distinguish two cases according to the
value of L(My).

1
Case 1. L(M1)<(s+1)(72—1)'

If L (M)H)<<

%, there is only one job J,,, as-

signed to M,, SFLS yields an optimal solution.

1 I .
If s< L (M )<< G+ D (1) consider the

jobs assigned to M,. If there is only one jobs J .
assigned to M2, then

SFLS L(M>)

OIS 2

N

— %< LMD

Hence

* LM
C S 1+(1)}

o | L(M,

s 1
<s—|—1 I+ s+ 1D(Y,— 1)] =%

The last inequality is due to

1+s+ 55+ 65+ 1
2(s+ 1)

2s—|—1—|—./4s+1 D
= 2(s+ 1)

V=

Otherwise. we conclude that there must be two
jobs, J,.x and a big job, denoted by J' with size p,,

assigned to M>. Infact, by the description of SFLS,
the algorithm will not enter Phase 2 unless the cur-

rent load of M; is greater than MD—M

M oreover, M processes at most two jobs in Phase 1.

Hence

L(My)= p'+1

st+1, .| _ 1
2{[ s ke 1] (s+1)(72—1)]+1

:s+1y_ 1
s 2 G+FDO—D

@)

L (M)
If CM===" by (D) and Q).
C’>< Ky 1+L(M1)
A ATV
\e
1
(s +D(y,—1)
s 2
<s—|—1 1+S+1Y N 1
s "7 G+HFDOL,—D
<72
SFLS
If C" "=L(M), consider the assngnment of

J nax and J' in the optimal schedule. 1f J , and J ' are

*
assigned to the same machine, then we can get C <<

L (M= c", SFLS yields an optimal schedule. If
J inax and J are assigned to the different machines we
L (M)+p'
have C << ST 5 Hence,
c’ _D
TR {“LL(M,)] {HL(MI)]
<8 +1 <,

Case 2. L (M1)/m

In this case, algorithm SFLS must stop at Phase
2. We distinguish the three subcases based on the
step by which Phase 1 enters Phase 2.

Subcase 2.1. Algorithm SFLS enters Phase 2 by
Step (1. 1). The load of M, at the beginning of

. 1
Phase 2 is grater than I D(Hh—D°

it =1 (M) and there are jobs assigned to
M, in Phase 2, from Lemma 4(2) we can see
LOMO< sL (M) +1
<sLMD+ G+ D= DLMD
= s+ DY — DL(M)

Hence,
c’ 1 L (M)
CSFLS\ S+1{1+ L (M)

—l—l

=1 (M) and there is no job assigned to

M, in Phase 2, J .
signed to M>in Phase 1. Hence, L (M;)< 2 and
c’ 1 L (M)

o= s Yoy

and at most one big job are as-
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( | LOML) gt
= —1
<1+ 2 S} s
SH{ ] J By Lemma 4(1); we h
G+ 1D,— 1D Yy Lemma ’ WeLa(V]\(} )
2
The last inequality is due to 72\2S_|__‘_11 LMD < +1
1 1
wie L (M) T vy — LM
If ¢*"==""2" and there is no job assigned s (s, S} (M2)
to M in Phase 2, we have Combur;lng with (1),
1 s+1 L =5 1+L(M‘)}
< < — FIS<=
GrDp=LtMy<="""1 M s LMy
and L (M,)=>1, since J,,, must be assigned to M. gsil 1+ = +W}’2s] <,
Therefore,
c s LMD L(M>)
S g 1+ L (M) 1f 5= =22 nd there is no job assigned
s er 1 to M in Phase 2, then the last job assigned to M is
< 1+ — 1| = 72 .. " . " "
a 0 of size p . Denote 1) the load o
s+ 1 big jobJ of p . Denoteby L (M) the load of
M just before J" is assigned. Then L (M;)<C
el ELY jobs assigned t 1 " "
and there are jobs assigned to and L (MD=L"(M)+p". Note that J,,

DO,

M in Phase 2, then

LS mle. By Lemma 4 (1), we have L (M) <C
L (M)
=2, Hence,
1+ +Dvn—1)
LIMD< ———— =L 0M)
and
(:96 Ky 1+L(M|)
e e AT
s 1+ G+ DO, — D
<S+1 1+ s ] VZ

Subcase 2. 2. Algorithm SFLS enters Phase 2 by
Step 2 of Phase 1. The load of M| at the beginning of

st1
s

Phase 2 is grater than Y1,

If CSFLS—L(M ), by Lemma 4 (1) we have

LMO<sL (M) +1

s
S+(S+1)YZ‘S]L(M1>
Hence, by (1),

c’ (I L(M,)
o e | LM
L s
<s+1 1+s+<s+1)72J<72
LMy
If C*"°==""=2" and there are jobs assigned to

M in Phase 2, then

S’Yzil
is assigned to M,. Let the total size of jobs assigned
to M other than Juw be L' (M2), i.e., L(My)=
L"(M)+1.
st1,
If L (Ml)g[ Y2 1] L(Mz), then

*

i LMD
) K + 1}

A= T T On

< - 1+erl

s+ 1 =7

Otherwise,
LM)> [ )

Consider the assignment of J,,, and J" in the optimal
schedule. If J

machines,

s+1
g 12

and J" are assigned to the different

max

‘< L' M)+ L (Mp)+1
S

Since

L' (M) <

1 1
< .
sY,—1 = s
c’ <L”(M13+L”<M2)+1
s L (My+1

" . . .
If J, and J are assigned to the same machine in the

<La+r"an

< 1+%< 0

optimal schedule, we have
c <L'(M)+L"(My

[S+ 172_ 1] (L”(Mz) +1

- (ﬁTlvz—J L(M)< L(M)

Since
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= L"MmMp+p" < LM +1

and
1 (s+2)7,—
S’)/z_l< SYZ

s Fst1+ /st —s+2st1
s(’/s—|—2)

YL (M)

s(L"(MD+ 1)

s+D7v—s

L'(M)<

due to V,=
sL"(M)D+ (s—

,» we have

<sL"(M)+ (s— 7y

oo sL'(MO+1
URENTE DY,—s

(s+2)Y2*2s_|_1
2 SVZ
R (s+Dv,—s

- s(s—|—2)72—2s2+s27272 -
o (st 1)7,— s ST Y=

. ¢’ s MpOH+L" (M)
ence, CSFLS\ 1+L”(M2> S 72~

Subcase 2. 3. Algorithm SFLS enters Phase 2 by
Step 3 of Phase 1.

25+ 72

A

— 251+ 7,

. sits L (M)
I = L . or 5= By

there are jobs assigned to M1 in Phase 2, the proof is

the same as Subcase 2. 2.

L(M>)
i o B

, and there is no job assigned

to M, in Phase 2, then L (M )< +

1
+D(hL—D
1. By the description of SFLS, we know that a big

! !
jobJ of size p is assigned to M, in Phase 1. And

J max» N0 matter whether it is assigned in Phase 1 or

Phase 2, is also assigned to M>. Therefore,
L (M= p +1
+1 1
=>4 —1—
= s Pl Grom—
st 1, 1

- 2

s G+ D—1D

+1

and we obtain
C* _ _s
O i

L(M)D
L(M,)
1

ST Da,—D

s+ly . 1
s 7 Gt DL—1D

1+

<21+

<7,

where the last inequality is equivalent to

((FD V=) (GHDYVI— G+ 7Y,—

which is valid by the definition of 7».
thus finished.

§)=0
The proof is

By Theorems 4 and 5, we know that FFLS is an

optimal algorithm for 1<S<%£, and SFLS is an

optimal algorithm for s €[ 1.618, 2. 148] U [ 3. 836,
©2). For the interval (2. 148, 3.836) in which SFLS
is not optimal the competitive ratio of SFLS is

monotone increasing. On the other hand, it can be

verified directly that is monotone decreasing

w hen
s € [ 2. 148, 2.414]
s st 1+ Js'— P 2st1 . )
and 1s monotone 1n-
s +2s

creasing when s ©[ 2. 414, 3. 836] . Hence, the

largest gap between the competitive ratio and the

S NP RS = NP
lower bound for any s is ) ~

0. 064, which achieves at 1-+./2 2. 414. Moreover,

the overall competitive ratio 2, which achieves when
s tends to © also matches the overall lower bound.
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